网络通信 频道

高频UPS的几个“致命弱点”论值得商榷

  (五)高频机结构UPS的外接变压器会损坏负载

  1.为何要外接隔离变压器

  取消输出隔离变压器是高频机型UPS的一大特点,也是一大优点,因为它降低了系统

  功耗、体积、重量和价格。可有的人非要把拿掉的这个变压器再加上去,当然这里有的用户也有这样的要求,不过用户的要求大都是受了某些厂家的误导所致。据说为了降低零地电压。尽管如此,有的问题提出者还不放心,说是“零地电压仍然偏高,仍然继续危害用电设备的安全运行”。就算按照某处的意思暂且给高频机型UPS加上外加变压器,如图13(a)所示,看一看这个论断如何。可以比较一下图13(a)和(b)两个电路。现在两个逆变器的输出都接入了变压器,可以看出两个逆变器的工作方式都是脉宽调制,调制频率也都差不多,也可以说一样。所以从逆变器功率管的工作来说是没有区别的;为了向负载送出正弦波电压,就必须加低通滤波器,将调制时的高频成分滤掉,只允许50Hz的正弦波通过,从图中也可看出其二者都有这个滤波环节,只是高频机型UPS的谐波滤波器在变压器之前,而工频机型UPS的谐波滤波器在变压器之后,就是说现在二者的工作环节不但有,而且一样。所不同的是滤波环节与变压器的位置。这样一来就可以看出,在高频机型UPS中,高次谐波在变压器之前就被滤掉了,通过零线回到了直流BUS的负端,即高频机型UPS的高次谐波根本没进入变压器初级绕组。而工频机型UPS的高次谐波是在变压器后面才被滤掉的,换言之是在靠近负载端被滤掉的。这就出现了一个问题:按照某君的说法:靠负载近的高次谐波形成的零地电压加不到负载上去,也不影响负载的工作;反而是离负载远的高次谐波形成的零地电压一定会加到负载上去,继续危害负载的安全运行。同样的电路原理反而出来两种不同的结果,不知此君是分析出来的还是测量出来的这种结果。好象从理论上就说不通。


▲图13 两类UPS都有变压器时的谐波路径图

  有的地方说高频机型UPS外加变压器后还会带来使设备烧毁的隐患。还说高频机型UPS“一旦因故出现输出停电或闪断故障”,外接隔离变压器就会出现“反激型的瞬态尖峰电压”,足以烧毁IT设备。当输入突然恢复供电时,又会导致并机系统“严重过载”,等等。令人不解的是,一样的供电环节,一样的功能,就是工频机型换成了高频机型,只一字之差,二者的结果就不一样了。难道说工频机型UPS就不会出现输出停电或闪断故障?即使出了,它的变压器也不会产生“反激型的瞬态尖峰电压”?当输入突然恢复供电时,工频机型UPS也不会导致并机系统“严重过载!难道说外接隔离变压器的破坏力是高频机型UPS固有的吗?话又说回来,这个高频机型UPS的外加变压器是某处硬给加上去的(供应商可从来就没这个打算),加上后又分析出这么多“潜在”的“隐患”。即加上变压器是他正确,分析出了问题是你加上去的不对,绕来绕去都是他的理。对高频机型UPS来说根本就没有外加变压器的必要,首先,如前所说零地电压就不是干扰源,再说也没传递零地电压的通道。影响用电设备的是常摸干扰,共模干扰是如何进入用电设备的?图14示出了常模干扰和共模干扰原理图,若使干扰电压起作用,就必须有能量,这里的能量就是电流与电压相乘的功率,即干扰源与被干扰对象(用电设备)必须形成电流回路。从图14可以看出,常模干扰电流是火线与零线之间的电压形成的,可以随着电源与负载形成电流回路。而共模电压(在这里是零地电压)则是零线与地线之间的电压,根本与用电设备形不成电流的闭环回路,不论是电压还是电流都没有到达用电设备的通道,又何谈干扰?又何谈“危害这些用电设备的安全运行”!


▲图14 常模干扰和共模干扰原理图

  令人不解的是,同样的变压器接在高频机型UPS逆变器的输出就有那么多的“隐患”,而接在工频机型UPS逆变器的输出就具有了更优异的抗“冲击性”负载的能力。实际上这是电抗器或扼流圈的特性。暂且不说概念上的误解,就算把这个变压器当成电感性吧,就是这个电感性在某种说法下:用在高频机型UPS逆变器的输出端就会出现损坏用电设备的“反激型的瞬态尖峰电压”,而用在了工频机型UPS逆变器的输出就具有了更优异的抗“冲击性”负载的能力。不仅如此,还成了“跨接在UPS与整流滤波型非线性负载之间的‘50Hz滤波器’,它将大幅度提高UPS承担具有高峰比的冲击性电流的能力”。看来这个变压器智能化到极点了!不过,笔者倒是遇到了输出接变压器烧毁和电池的例子,而且是烧的工频机。如下例所示。

  例:北京某制造厂就因600kVA UPS供电方案如图15所示。这里用5台150kVA UPS做4+1冗余并联,输出端是5个UPS输出变压器次级绕组并联。负载中还有一台300kVA变压器,可说是层层设防。但在电池模式供电时由于300kVA负载变压器开关S合闸,因负载变压器的瞬时短路而导致了UPS部分烧毁和电池组起火,一举烧毁了70余节100AH电池,5个变压器没起到任何所谓“缓冲”和“滤波器”的作用。

  值得一提的是有的把变压器说成可以抗干扰,这又是一个基本概念问题。什么器件可以抗干扰?具有基本电路知识的人都知道,只有非线性器件或惯性器件才能抗干扰。变压器是非线性铁心器材工作在线性区,正因如此,它才使得传输波形不失真。变压器的绕制关键就是力求漏感越小越好,零漏感的最好。一个好的变压器就几乎是一个全线性的装置,线性电路的的特点就是不失真地传输波形——输入是什么波形输出就照样复制,这可以用双踪示波器来检测,一看便知,无需争论。漏感大的变压器因有电感是低质变压器,甚至是不合格产品,因为它降低了电源输出电压的动态性能。有人拿着不合格产品负面性能造成的现象当成正事来说就不合适了。


▲图15 某半导体厂4+1冗余并联连接输出接一变压器的原理图

  当然,专门的工频机型UPS输出变压器为了从PWM解调出正弦波,有意识地在输出变压器绕制时有意留一点漏感,目的是利用此漏感和变压器后面的电容器构成LC滤波器。但这个漏感很小,以不影响UPS的输出动态性能为度。


▲图16 两类UPS输出与负载连接原理图

  前面高频机型UPS的变压器说的一无是处,其目的就是为了推出工频机型UPS输出变压器的所谓高性能。有的口口声声说利用这个UPS的输出变压器来抗干扰,试问抗的是什么干扰?是UPS输出变压器前面来的干扰还是负载端来的干扰?抗所谓干扰的目的是什么,是为了保护后面的负载还是保护UPS的逆变器?要知道UPS逆变器的输出电压是非常好的正弦波,没有干扰;那只有“抗”来自负载的干扰。但负载端来的所谓干扰是负载的正常工作造成的。因为以往的负载设备多为输入功率因数较低的整流滤波负载,对UPS的输出电压正弦波造成了一定程度的破坏,一般称之为“干扰”,而这个所谓的“干扰”就是负载工作后破坏电压“结果”。这个被破坏电压的结果靠负载端最大,从UPS输出端到负载的距离越远、导线越细、经过的触点越多,这个失真就越大;相反,这个失真在UPS输出端最小,这并不是什么变压器能抗干扰的结果,而是它本来的面目。如图16的上下两个图(a)和(b)所示,如果两个同样功率UPS带同样的负载,其UPS输出端都是很好的正弦波,到了负载端就变成了失真波形,如图16两个图(a)和(b)所示。这是因为负载的整流滤波电路向负载索取的不是正弦波电流,而是平均或有效值数倍的脉冲电流,这个电流必然在传输线上与传输线的分布阻抗形成压降,由于脉冲电流只在正弦电压波的峰值附近形成,所以这个压降只在峰值附近形成,到达负载的电压波峰值必须从UO峰值上减去沿路压降值,所以才形成削顶的失真。UPS机柜输出端电压UO的波形取决于UPS内阻的大小,所以负载端的失真大和UPS端的失真小和变压器没关系,而且也不是什么干扰,更不是什么变压器抗干扰的结果。而且不论是工频机型UPS还是高频机型UPS,在这方面的结果都是一样的。至于在UPS输出带负载之间电缆上的“毛刺”也是由负载的非线性破坏电压的波形和传输所致,也不是什么所谓的干扰。


▲图17 UPS输出电压到达负载的情况与到负载距离的关系示意图

  由于在UPS输出端口这个干扰幅度已微乎其微,不用抗。抗干扰的目的不外乎要保护什么。在这里和这个输出变压器打交道的只有两个目标:前面的逆变器和后面的用电设备。前面已经知道,这个所谓干扰是负载正常工作后留下的结果,属正常工作范围,所以用不着保护;前面的逆变器跟前都有电容器,而且这里的输出电压正弦波很好,没有所谓“干扰”,也用不着变压器无的放矢。所以这里所大力宣扬的变压器抗干扰是“虚晃一枪”,是“无的放矢”。但如果不知道这个原理,也会被这“虚晃一枪”所震撼!

  总之,在贬低高频机型UPS的市场上有的宣传者利用所谓“分析”的手段或不合格产品的性能制造出一些所谓“潜在”和“隐患”之类的悬念,吓唬不知真相者;把同样东西的“优点”都贴在工频机型UPS的脸上,将所谓不利的一面都栽在高频机型UPS的头上。想借此将工频机型UPS的市场寿命延长一些时日。作为商家这样做虽然不好,但为了生计也情有可原。但作为学术讨论就有失公允了。尤其是在不了解机器性能的情况下也充当内行,莫须有地制造悬念。当然,这其中不乏是理论水平和基本概念问题,但无论如何误导用户是不应该的。更不应该和当今国家节能减排的政策相违背。

0
相关文章