网络通信 频道

GMPLS、光子业务交换和网络的未来

 

GMPLS、光子业务交换和网络的未来(图二)

    在一个纵向集成网络中,同一个设备必须支持不同的接口,包括IP、TDM和波长业务等。这样就减少了网络中的设备数量,同时使运营商在设计网络时有了更多的选择。纵向集成保留了运营商们所知和所需的不同层的功能和优点,例如IP或MPLS、SONET和光层。运营商既可以充分利用各层特有的性能,如粒度、保护和恢复功能等,又可以保持网络的简单和高效。GMPLS使统一的管理成为可能,在不同的层面管理网络和配给业务是相同的,于是某种服务可以分配给最恰当的网络层面。最后,纵向集成网络无需在某一层中仿真另外一层的功能。

    PSS和GMPLS

    构造PSS网络,GMPLS和一种新型网元——PSS交换机——都是必不可少的。PSS交换机包括可靠、快速的光交换背板和电子线路卡,它将光技术和电技术的最优属性结合在一起。图2显示了多业务类型的PSS交换机,图3所示为仅有分组交换接口的PSS交换机。光交换背板使PSS交换机几乎具有无限的可扩展性。不同的线路卡适合于不同的业务类型,因此当应用环境发生变化时,交换机只需更换线路卡。例如,一个在纯IP环境下使用的交换机,通过增加恰当的线路卡就可以交换TDM业务。这种多功能性说明,在从重叠型网络向最终的GMPLSPSS网络发展的过程中,使用PSS交换机是非常合适的。

GMPLS、光子业务交换和网络的未来(图三)

   

图2

GMPLS、光子业务交换和网络的未来(图四)

   

图3

    GMPLS使所有类型的业务都能自动配给。从IP经过MPLS(多协议标签交换)和MPλS(多协议波长交换)发展而来,GMPLS是一系列协议的不断扩展,最终可以对分组交换、TDM和波长交换进行统一控制。协议扩展的结果使标签分配、流量控制、保护以及恢复等功能所涉及到的路由和信令协议发生了变化。 GMPLS的发展是从下面的前提开始的:

    用于IP网的路由和信令协议是可以扩展的,并且可以适用于其他类型的业务,如TDM和波长交换。

    协议的扩展将能够对所有类型的业务的配给进行全面地集成。

    光交换技术的发展将最终实现波长转换,同时,如果给定适当的协议,可以实现智能光交换。

    GMPLS具有类似“胶水”的能力,它可以将承载不同类型业务的网络的不同部分粘在一起。图4给出了GMPLS交换接口的体系结构。

GMPLS、光子业务交换和网络的未来(图五)

   

图4

    更快更准确地配给业务,连同更高效的保护和恢复方案,仅仅是GMPLS可以带给未来网络的两个好处。GMPLS利用控制平面可以自动配置资源,发现网络拓扑,简化并加速连接的建立和拆除。这使GMPLS网络非常灵活,且能够迅速地响应用户的要求,同时动态地管理网络。

    在点对点的电路配置中,令人生厌的笨拙的集中式手工配置仍然占统治地位,如果用GMPLS的自动配给取而代之,则不仅能够提高配给速度,而且能够减少错误。

    在保护和恢复方面也可能取得类似的进展。虽然在一个重叠网络中,每一层对于它所携带的特定类型的业务而言是高效的,但是层与层间经常需要重复保护。一个具有自身保护机制的业务网络也依赖于业务链路,也就是是传输网络的连接。在分层网络中,服务网络无法获得传输网络的信息,也无法知道经过传输网络的连接是否是不同的。业务网络必须明确提出它经过传输网络所要求的保护级别,这样,经常会导致资源的重复分配。

    在对等网络或者GMPLS纵向集成网络中,业务和传输间的交流障碍消除了,从而使所要求的保护占用最少的资源。如果业务网络确信在经过传输部分时采取多径传输,那么可以选择在传输过程中不加保护。无论业务层要求多少冗余度,多径传输都可以提供足够的保护,而无需近一步重复保护。节省下的资源可以分配给其他的用途,用户也会因此而受益。

    同样地,由于共享了GMPLS提供的信息,网络传输端的保护也提高了效率。例如,如果传输端知道两条业务链路在业务层保护方案中是不相关的,它就可以使这两个业务在传输层共享备用资源,而无需分配两次资源。

    既不是全部也不是全不

    要求对等网络和GMPLS纵向集成网络立刻就全部实施是不现实的。现在不是全部实施还是全不实施的问题,而是先做什么和按什么顺序做的问题。开始时, GMPLS和PSS可以仅仅应用于传统重叠网络中的一层,在提高整体网络效率的要求的促使下,逐步地扩展到其他层面。下面描述了向最终的纵向集成网络过渡中的几个可能的阶段。

    ‧阶段0:采用现在普遍的重叠网络。IP业务网络运行IP/MPLS协议。传输网络应用网络管理协议或者专有协议简化业务的建立,即网元间点对点的连接。业务配给人员通过电话或者是互联网提出建立或拆除连接的请求。

    ‧阶段1:提高建立连接的速度和准确性,增加网络的灵活性和效率。业务层提出的建立或拆除连接的请求是自动提交给传输层的。业务层网络通过一个信令接口与传输层网络交换请求。这个接口最初是光互联论坛(OpticalInternetworkingForum)定义的UNI,它主要基于GMPLS的信令协议。

    阶段2:层间协议标准化,逐步向业务层和传输层集成控制的目标靠近。在这个阶段,GMPLS协议将取代传输层的网络管理和专有控制协议,这样就简化了节点间连接的建立。

    阶段3:集成化的最终阶段。一旦运营商利用集成网络结构充分提高了效率,在业务网络和传输网络之间交换信息,即控制平面的集成就可以实现了。在一个采用PSS交换机、运行GMPLS协议的网络中,对于所有类型的业务,GMPLS都作为信令协议和路由协议的标准。所有网元都了解无论是携带了何种业务的其他网元的信息。GMPLS路由和信令协议可以用于波长交换、TDM以及分组交换业务。如果交换机将业务负荷所涉及的分组交换、TDM、波长交换的线路卡恰当组合并配置,则可以近一步提高效率。

    新的可能性

    很明显,GMPLS和PSS既可以用于重叠网络,又可以用于纵向集成网络。通过信令协议和路由协议的扩展,GMPLS可用于分组交换、TDM以及波长交换业务。它将IP智能,包括各种QoS(服务品质),引入了所有类型的业务,简化业务配给,改进了保护和恢复方案。GMPLS能够提高重叠网络和其他过渡网络的效率,然而它只有在PSS网络中才能最终实现最高的效率。

    不是在任何情况下,所有层面的集成都是最好的选择。例如,电信运营商也许并不想和他的竞争对手一起分享所有的网络信息。然而,随着人们对带宽和服务的需求日益增加,以及网络拓扑从环形发展到格形带来网络的复杂性不断增加,简化网络结构势在必行。

    我们已经有了向为未来更高效的网络演进的工具,即GMPLS和PSS。所以,现在摆在运营商面前关于网络层集成的问题,不是是否需要和如何实现的问题,而是何时实施和集成到什么程度的问题。答案是:越快越好,越彻底越好。

    作者:DEBASHISBASAK翻译:judyzuo

0
相关文章