3.1.1 BICC协议
BICC是在ISUP基础上发展起来的,在语音业务支持方面比较成熟,能够支持以前窄带所有的语音业务、补充业务和数据业务等。BICC是直接面向电话业务的应用提出的,来自传统的电信阵营,具有更加严谨的体系架构,因此它能为在软交换中实施现有电路交换电话网络中的业务提供很好的透明性。
BICC协议解决了呼叫控制和承载分离的问题,使呼叫控制信令可以在各种网络上承载,包括MTP No.7网和IP网。
目前BICC协议由CS1向CS2、CS3发展。CS1支持呼叫控制信令在MTP No.7网和ATM网上的承载;CS2增加了在IP网上的承载;CS3则关注MPLS、IP QoS等承载应用质量以及与SIP互通问题。
3.1.2 SIP与SIP-I协议
SIP协议是一个基于文本的应用层控制协议,用于建立、修改和终止双方或多方多媒体会话,在实现上独立于底层传输协议,底层承载可采用TCP/UDP/SCTP中的任何一种。SIP协议通过与RTP/RTCP、SDP、RTSP等协议及DNS配合,在能力上可支持语音、视频、数据、状态呈现、即时通信、游戏等业务。除此之外,SIP消息体部分可允许同时存在多种不同会话描述协议,此种方式称为MIME(Multipurpose Internet Mail Extensions)。
当SIP成为一种趋势时, ITU也开始制定相关标准,研究PSTN如何与SIP网络进行互通。只不过ITU的相关文档是在IETF的成果基础上得出的。ITU提出了TRQ 2815和Q.1912规范,其中,TRQ 2815类似于IETF的RFC3372,定义了SIP与BICC/ISUP互通时的技术需求,包括互通接口模型、互通单元IWU所应支持的协议能力集、互通接口的安全模型等;Q.1912类似于IETF的RFC3398,根据IWU在SIP侧的NNI上所需支持的不同协议能力配置集,详细定义了SIP与BICC/ISUP的互通、一般情况下SIP与BICC/ISUP的互通、SIP带有ISUP消息封装时(SIP-I)与BICC/ISUP的互通等。在Q.1912中,将封装了ISUP消息的SIP消息称为SIP-I。
SIP-I协议族重用了许多IETF的标准和草案,内容不仅涵盖了基本呼叫的互通,还包括了BICC/ISUP补充业务的互通。
3.2 互通需要解决的关键问题
由上面的分析可以看出,软交换网络和3G网络在业务实现时存在下述几点不同,在业务互通时必须解决好这几个方面的问题。
3.2.1 协议及编解码方式的转换
软交换网络中的控制设备(即软交换设备)支持SIP/SIP-I协议进行互通;3G网络中的控制设备(即MSC Server设备)支持BICC协议进行互通。互通时,需要在控制层设置相应的协议转换设备,根据呼叫发起的方向不同,互通设备实现以下两种功能:
a) 终结BICC协议,并发起SIP/SIP-I协议;
b) 终结SIP/SIP-I协议,并发起BICC协议。
另外,由于软交换网络和3G网络采用的媒体编码格式不同,因此,在承载层需要特定的媒体转换设备,完成媒体编码的转换。
3.2.2 互通网关的选择
软交换网络和3G网络的网关具有不同的特性,因此,在选择互通网关时,必须注意网关能够具备与两种网关的互通。
网关控制模型的主要不同在于承载控制功能(BCF)的位置。软交换网络的承载控制由软交换设备完成,即软交换设备完成媒体地址的交互、媒体类型的协商等功能。3G网络的承载控制由网关设备完成,即网关设备完成媒体地址的交互、媒体类型的协商等功能。
上述的不同使得3G网络和软交换互通时,需要通过特定的互通网关,同时支持网关设备的媒体控制协商功能和软交换设备的媒体控制协商功能。
3.2.3 DTMF的信号处理
软交换体系支持两种DTMF信号的处理,RFC2833带内传送和SIP info方式的带外传送,与3G互通时,前者通过互通网关终结2833并上报MSC Server,转换成BICC,而后者则通过互通控制设备将SIP info直接映射到APM中。
综上所述,在2个网络互通时,需要设置相应的互通协议转换设备和互通网关设备来解决上述问题。
4 结束语
随着软交换网络应用越来越广泛以及3G牌照的下发日期日益临近,探讨和关注2个网络的互通将是直接影响到网络的建设和部署的关键问题。各个运营商在了解互通的关键技术问题的基础上,可以根据自己网络的实际情况和网络部署的实际需求,选择合适的互通方案,部署和建设网络。
软交换与3G网络互通关键技术分析
0
相关文章