【IT168 专稿】网络设备大致分为集线设备和路由设备两类,而集线设备又划分为集线器和交换机。当然,交换机又可根据性能划分为多个类别。虽然不同网络所采用的设备千差万别,拓朴结构也并不相同,但集线器与交换机的连接,以及不同性能交换机之间的连接所遵循的策略却是相同的。
一、交换机连接策略
交换机的种类非常多,不同类型的交换机之间在连接时,应当有针对性地采用遵循不同的连接策略,以获得非常好的的网络性能。
1. 不对称交换网络连接策略
所谓不对称网络,是指由不对称交换机构建的网络。则不对称交换机,则是指交换机拥有不同速率的端口,或者是10Mbps和100Mbps,或者是100Mbps和1000Mbps。通常情况下,高速端口用于连接其他交换机或服务器,而低速率端口则用于直接连接计算机或集线器(如图1所示)。该连接方式同时解决了设备之间以及服务器与设备之间的连接瓶颈,充分考虑了服务器的特殊地位,通过增加服务器连接带宽,可有效地防止服务器端口拥塞的问题,同时,由于交换机之间通过高速端口通讯,可使网络内所有的计算机都平等地享有对服务器的访问权限。
#$[*122341.jpg*#图1(点击看大图)*#0*#0*#center*]$#
2. 对称交换网络连接策略
所谓对称网络,是指由对称交换机构建的网络。对称交换机,是指交换机所有端口拥有相同的传输速率。对称网络的连接策略非常简单,就是选择其中一台交换机作为中心交换机,然后,将其他所有被频繁访问的设备,如其他交换机、服务器、打印机等,都连接至该交换机,而其他设备则连接至其他交换机(如图2所示)。由于所有端口只需一次交换即可实现与频繁访问的设备的连接,因此,大幅度地提高了网络传输效率。需要注意的是,在该拓朴结构中,对中心交换机性能的要求比较高。如果中心交换机的背板带宽和转发速率较差,那么,将会影响整个网络的通讯效率。
#$[*122343.jpg*#图2(点击看大图)*#0*#0*#center*]$#
3. 不同性能交换机连接策略
从交换机背板带宽和转发速率上看,交换机之间的性能区别很大。性能最高的交换机(通常是三层交换机)作为中心交换机(或企业交换机)位于网络的中心位置,用于实现整个网络中不同子网之间数据交换;性能稍逊的交换机(可以是三层交换机)作为骨干交换机,用于实现某一网络子网内数据之间的交换;性能最差的交换机作为工作组交换机,用于直接连接至桌面计算机,为用户直接提供网络接入,如图3所示。
#$[*122345.jpg*#图3(点击看大图)*#0*#0*#center*]$#
二、共享网络连接策略
所谓共享网络,是指由全部集线器构建的网络。在共享网络中,所有端口共享集线器的连接带宽,并且处于同一碰撞域,因此,在网络用户较多且通讯量较大的情况下,通讯效率极其低下。所以,当计算机数量较多时,建议构建交换式网络,或利用交换机作中心设备构建混合网络。
1. 10Base-T共享网络连接策略
(1)10Base-T共享网络的5-4-3规则
虽然经过集线器的放大后,信号可以传输到更远的距离,那么,是不是可以将这个距离延伸到很远很远的距离,从而根据自己的需要随意扩大网络直径呢?不是的,凡事都有个限度,集线器间的级联也不能无休止的进行下去,10Base-T网络的范围也不能无限制地扩大。否则,将由于经过的集线设备太多,到达目的地的距离太远,信号传输所使用的时间太长,使发送数据的源计算机误认为信号无法到达,从而导致通讯失败。那么,经过多少集线器,或者说经过多长的距离是被允许的呢?换句话说,什么样的拓朴结构是10Base-T网络认为可以忍受的呢?这就是5-4-3规则。不过,需要注意的是,该规则只适用于单纯由集线器而组建的10Base-T共享式网络,而由交换机所构建的网络,并不遵循这一规则。
所谓5-4-3规则,是指任意两台计算机间最多不能超过5段线(既包括集线器到集线器的连接线缆,也包括集线器到计算机间的连接线缆)和4台集线器,并且只能有3台集线器直接与计算机等网络设备连接。如图4所示即为10Base-T网络所允许的最大拓朴结构,以及所能级联的集线器层数。其中,Hub 4是网络中唯一不能与计算机直接连接的集线器。
#$[*122351.jpg*#图4(点击看大图)*#0*#0*#center*]$#
事实上,许多人为了连接方便而在集线器间采用了过多的级联(在搭建大型机房时经常出现),使集线器级联的层数达到4层(如图5所示),虽然计算机之间的连接没有超过5段线和4台集线器,但由于所有的集线器都连接了计算机,依然仍违反了10Base-T网络5-4-3规则中只有3台集线器可以直接连接计算机的规定,从而造成网络通讯的失败。在这种情况下,如果不了解或不熟悉5-4-3规则,恐怕将无从下手去判断和排除网络故障,将一直会为“一切都是好好的,可为什么就是不通?”的问题而困扰,而这也正是我们为什么要在这里介绍“古董级”的5-4-3规则的初衷。
#$[*122354.jpg*#图5(点击看大图)*#0*#0*#center*]$#
(2)10Base-T共享网络的连接策略
10Base-T共享网络通常只适用于小型网络,计算机数量通常不应当多于50台。事实上,集线器的端口数量通常都比较少,市面上的10Base-T集线器通常为16口。因此,当网络内的计算机数量多于16台计算机时,就必须采用级联的方式以成倍地扩展端口。由于两台集线器之间的连接需要占用两个端口,因此,当计算所需要的集线器台数时,应当将集线器连接所需要的端口数量考虑在内。
集线器连接时,应当尽量选用一台端口数量较多的集线器作为中心集线器,然后,将其他所有集线器和服务器均连接至该中心集线器(如图6所示),从而确保不会违反5-4-3规则,并便于故障的判断和排除,并有利于对网络的管理。网络内的其他计算机可以就近直接连接在各集线器上。由于集线器间、集线器与计算机之间的连接距离均可达100米,因此,该拓朴策略的网络直径最大可达300米,对于小型网络而言已经绰绰有余了。
#$[*122357.jpg*#图6(点击看大图)*#0*#0*#center*]$#
如果网络直径的确大于300米,也可以再级联一级集线器,从而使网络直径扩大至400米(如图7所示)。但是,需要注意的是,作为中心连接设备的集线器不能直接连接任何计算机或服务器。更大的网络直径,建议选用光缆及光纤设备或选用交换设备,此时由10Base-T集线器构建的共享网络已经不能再满足需要了。
#$[*122359.jpg*#图7(点击看大图)*#0*#0*#center*]$#
2. 100Base-TX共享网络连接策略
(1)100Base-TX共享网络规则
快速以太网规则也是仅适用于单纯由集线器所组成的共享式网络。当网络中加入交换机作为集线设备后,由于将分隔原有的网段,所以,只是在每一个网段中适用该规则,而不是在整个网络中适用该规则。这么说吧,每个交换机端口就是一个网段,凡是级联至同一端口的所有集线器都处于同一网段,这些集线器的拓朴结构必须遵循快速以太网的规则。同样,级联至另一端口的所有集线器也都处于另一网段,那些集线器的拓朴结构同样要遵循快速以太网的规则。对于分别连接至交换机不同端口的集线器而言,彼此之间则无需遵循该规则。
100Base-TX快速以太网规则如下:
所有双绞线的长度不能超过100米。
一个单独的快速以太网可以有一至两个II类集线器。或者说,一个网络内不能拥有三个或三个以上相互连接的II类集线器。
连接II类集线器的上行链路电缆长度必须在5米以下。
一个单独的快速以太网只能有一个I类集线器。
I类和II类集线器在同一快速以太网中不能同时使用。
由于堆叠后的集线器堆栈可视为一个集线器,因此,如果需要提供多端口时,可采用堆叠的方式来解决这一矛盾。另外,也可采用以交换机作为中心节点的方式,把每个集线器分别连接至交换机的一个端口。
(2)100Base-TX共享网络连接策略
100Base-TX共享网络的拓朴结构非常简单,如果使用I类100Base-TX集线器,那么,在网络内只能有一台集线器(如图8所示)。由于集线器之间不能级联,而且集线器的端口数量最大为24口,因此,由I类100Base-TX集线器构建的共享网络,无论是计算机的数量(最多24台)还是网络直径(最大200米)都非常有限。
#$[*122371.jpg*#图8(点击看大图)*#0*#0*#center*]$#
如果使用II类100Base-TX集线器,那么,在网络内只能有两台集线器(如图9所示),集线器之间通过双绞线级联,并且长度不超过5米。由于只能连接两台集线器米,而且集线器的端口数量最大为24口,因此,由II类100Base-TX集线器构建的共享网络所能容纳的计算机数量仍然非常有限(最多46台)。另外,由于,级联线不能超过5米,因此,就网络直径而言,网络直径仍然非常有限(最大205米)。
#$[*122373.jpg*#图9(点击看大图)*#0*#0*#center*]$#
既然每个网段内只允许有一至两台集线器,而且每台集线器所能够提供的端口数量都是有限的,那么,当计算机数量多于集线器所能够提供的最多端口时,应当怎么办呢?答案只有一个,那就是堆叠。也就是说,当必须使用2台以上的集线器时,可以使用专门的堆叠电缆(如3Com产品)或普通的双绞线将其堆叠起来,将它做为一个设备来管理和使用。当然,堆叠的前提是必须选择可堆叠快速以太网集线器。
不过,问题依然没有得到完全解决,那就是,双绞线快速以太网的网络直径最大为200米,这无疑也在很大程度上限制了网络的规模和范围。也就是说,由快速以太网集线器作为集线设备而组建的局域网络,网络的最大跨度为200米,而且每台计算机距离集线器最远不得超过100米。这个问题在由双绞线构建的共享式网络中无法得到解决。因此,必须把思路再放宽些。解决这个问题最廉价的方式就是使用交换设备。即通过将集线器级联到交换机的方式,实现网络端口成倍的扩充和网络直径的进一步扩大。
3. 100Base-TX与10Base-T混合共享网络
需要注意的是,真正意义上的100Base-TX集线器与10Base-T集线器是无法连接在一起的。如果大家留意一下就会发现,即使能够同时接入10Base-T与100Base-TX设备的集线器,也是被称为10Mbps和100Mbps双速集线器,而不是像交换机那样被称为10/100Mbps自适应交换机。因此,若欲实现10Mbps共享网络与100Mbps共享网络的连接,就必须借助于10/100Mbps双速集线器(如图10所示),即以双速集线器作为网络中心设备,其他10Mbps集线器、100Mbps集线器均连接至该集线器,从而实现网络中10Mbps设备与100Mbps设备之间的互连互通。
#$[*122375.jpg*#图10(点击看大图)*#0*#0*#center*]$#
10/100Mbps双速集线器内置的10/100Mbps交换模块可实现10Mbps和100Mbps网段的桥接,使用户简单易行地从10Mbps以太网转移至100Mbps以太网。集线器的每个端口都可自动检测所连接设备的运行速率,并在10Mbps以太网和100Mbps以太网间确定端口的运行速度,之后,端口被连接到两个内置集线器之一,一个集线器在100Mbps以太网下运行,另一个则在10Mbps以太网下运行。在常规状态下,以太网和快速以太网集线器上,双速集线器端口只以半双工模式运行。双速集线器允许以太网和快速以太网设备在同一网络中相互连接,用户不必了解设备在以何种速率运行,利用快速以太网网卡,则这些设备将以100Mbps连接到双速集线器上,在快速以太网网卡可以使用的网络,仍可以连接到10Mbps集线器上。
三、混合网络连接策略
所谓混合网络,是指在网络中既有交换机也有集线器,由交换机和集线器混合构建的网络。由于交换机拥有较高的传输带宽和传输效率,因此,在混合网络中,应当把其中一台性能较好的交换机作为网络的中心,其他交换机、集线器、服务器、打印机等设备都连接至该交换机,而普通计算机则连接至集线器(如图11所示)。
#$[*122379.jpg*#图11(点击看大图)*#0*#0*#center*]$#
该方式以交换机端口将各集线器的碰撞域分割开来,有效地减少了网络碰撞冲突,大幅度提高了网络传输效率。由于服务器和打印机等各用户频繁访问的设备都连接至交换端口,拥有较高的网络带宽,从而解决了网络的传输瓶颈。
四、服务器连接策略
规模稍大一些的网络通常都拥有专用服务器。由于服务器通常为网络中的所有用户提供服务,特别是Internet连接共享服务器、文件服务器和打印服务器,用户对服务器访问的次数和频率,肯定远远高于对其他计算机的访问,因此,与服务器的连接往往就会成为网络瓶颈,既无法响应众多并发用户对服务器的访问,又无法及时传输用户上传和下载的数据。
在连接服务器时,应当遵循以下策略:
第一,服务器应当与中心集线设备连接在一起。无论中心集线设备采用集线器还是交换机,服务器都应当直接连接至中心集线设备,从而使网络内的每台计算机都享有平等地访问服务器的权利。
第二,如果有一些计算机需要频繁地访问服务器,那么,应当将这些计算机与服务器连接至同一集线设备。
第三,服务器应当连接至集线设备所能提供的最高速率的端口上,从而避免可能由于端口速率而导致的瓶颈。
第四,服务器应当连接至性能最高的交换机上。不同品牌和型号的交换机拥有不同的性能,高性能交换机拥有较高的背板带宽和端口缓存,因此,能够适应更频繁和更多的并发访问,实现与服务器的线速连接(如图12所示)。
#$[*122385.jpg*#图12(点击看大图)*#0*#0*#center*]$#